
 

  Abstract

 

In recent years, Graphplan style reachability analysis and
mutual exclusion reasoning have been used in many high
performance planning systems. While numerous refinements
and extensions have been developed, the basic plan graph
structure and reasoning mechanisms used in these systems
are tied to the very simple STRIPS model of action. 

In 1999, Smith and Weld generalized the Graphplan
methods for reachability and mutex reasoning to allow
actions to have differing durations. However, the
representation of actions still has some severe limitations
that prevent the use of these techniques for many real-world
planning systems.

In this paper, we 1) develop a logical notion of
reachability that is independent of the particular
representation and inference methods used in Graphplan,
and 2) extend the notions of reachability and mutual
exclusion to more general notions of time and action. As it
turns out, the general rules for mutual exclusion reasoning
take on a remarkably clean and simple form. However,
practical instantiations of them turn out to be messy, and
require that we make representation and reasoning choices.

 

Introduction

 

In 1995, Blum and Furst introduced a method for reachabil-
ity analysis in planning [2, 3]. The method involves incre-
mental construction of a plan graph to provide information
about which propositions and actions are possible at each
time step. Since then, plan graph analysis has been a key part
of several high performance planning systems such as IPP
[18], STAN [19], and Blackbox [16]. More recently, reach-
ability analysis has been used for another purpose – to help
compute more accurate heuristic distance estimates for
guiding state-space search [4, 11, 24, 22] and guiding search
in partial-order planners [23].

Reachability analysis and mutual exclusion reasoning
have also been the subject of both efficiency improvements
[19, 6], and extensions to deal with things like limited forms
of uncertainty [26, 28], and resources [17]. Unfortunately,
the basic plan graph structure and reasoning mechanisms are
limited to the very simple STRIPS model of action. In
STRIPS, one cannot talk about time – actions are considered
to be instantaneous, or at least of unit duration, precondi-
tions must hold at the beginning of actions, and effects are
true in the subsequent state. Many real world planning prob-

lems require a much richer notion of time and action; actions
can have differing durations, preconditions may need to hold
over some or all of that duration, effects may take place at
differing times, and exogenous events or conditions may oc-
cur.

In 1999, Smith and Weld [27] generalized the Graphplan
methods for reachability and mutex reasoning to allow ac-
tions to have differing durations. However, the representa-
tion of actions used by Smith and Weld still made a number
of simplifying assumptions:

1. All effects take place at the end of an action.

2. Preconditions that are unaffected by an action hold
throughout the duration of the action.

3. Preconditions that are affected by an action are unde-
fined throughout the duration of the action.

4. There are no exogenous events.

Unfortunately, these restrictions are not reasonable for many
real-world domains [14, 25]. Many actions have resource
consumption effects that occur at the beginning of the ac-
tion. Others have effects that are transient. In addition, some
action preconditions need only hold at the beginning of an
action, or for a limited period. As an example that illustrates
all of these, turning a spacecraft involves firing thrusters for
periods at the beginning and end of the turn. As a result,
there are transient needs for various resources (valves, con-
trollers), transient effects like vibration and heat that occur
near the beginning and end, and outright resource consump-
tion (fuel) that occurs near the beginning, and near the end.

Finally, exogenous events are crucial in many domains.
For example, in planning astronomical observations, celes-
tial objects are only above the horizon during certain time
windows, and they must not be occluded by other bright ob-
jects.

While Smith and Weld’s Temporal Graphplan (TGP)
planner performs reasonably well, the representation cannot
be easily extended to remove the above restrictions. In par-
ticular, when exogenous events and/or transient effects are
permitted, reachability and mutual exclusion relationships
hold over intervals of time. For example, the action of ob-
serving a particular celestial object is only reachable during
the intervals when the object is visible. A second problem
with TGP is that the mutex rules are complex, and it has been
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difficult to verify that they are sound.
In this paper we extend the notions of reachability and

mutual exclusion reasoning to deal with the deficiencies in
TGP. In particular, we allow: 1) actions with general condi-
tions and effects, and 2) exogenous conditions. Note that our
objective here is not to develop a planning system that does
this reasoning, but rather to lay down a formal set of rules for
doing this reasoning. Given such a set of rules, there are
choices concerning how much reachability reasoning one
actually wants to do, which in turn leads to different possi-
bilities data structures, implementations, and search strate-
gies.

In the next section we introduce notation for time and ac-
tions. Using this notation, we then develop the laws for sim-
ple reachability without mutual exclusion. We then develop
a very general but simple set of laws for mutual exclusion
reasoning. Finally, we discuss practical issues of implement-
ing these laws. In particular, we discuss some possible re-
strictions that one might want to impose on mutex reasoning
and discuss how these laws can be implemented using a con-
straint network and generalized arc-consistency techniques.

 

The Basics

 

Propositions, Time and Intervals

 

To model many real world planning domains, we need to
talk about propositions (fluents) holding at particular points
in time, and over intervals of time. We will use the notation

 to indicate that fluent 

 

p

 

 holds at time 

 

t

 

. We will use the
notation  to indicate that 

 

p

 

 holds over the interval 

 

i

 

. Thus:

We use the standard notation , , ,
 to refer to closed, open, and partially open intervals

respectively, and use  and  to refer to the left and right
endpoints of an interval. For any constant 

 

t

 

, the notation 
refers to the translated interval with left and right endpoints

, and  respectively.
For our purposes, we do not need a full set of interval re-

lations, such as those defined by Allen [1]. However, we do
need the simple relation 

 

meet

 

. Two intervals 

 

meet

 

 if the right
endpoint of the first is equal to the left endpoint of the sec-
ond, and the common endpoint is contained in at least one of
the two intervals (they can’t be both open):

 

1

 

Finally, we use  to refer to the concatenation of two in-
tervals that meet.

 

Actions

 

In many real world domains, actions take time. In order for
an action to be successful, certain conditions may need to
hold over part or all of the action. Furthermore, different ef-
fects of the action may not all occur at the same time. In fact,

some of these effects may be 

 

transient – 

 

that is, they are only
temporarily true during the action. For example, an action
may use a resource (such as a piece of equipment) but re-
lease it at the end. In this case the resource becomes unavail-
able during the action, but becomes available again at the
end of the action. To capture all of this, we model actions as
having sets of conditions and effects.

 

2

 

 Thus, an action is rep-
resented as:

 

a

 

cond: 

eff:

 

where the times for conditions and effects are specified rel-
ative to the start of the action. More precisely, the semantics
of this representation is that if action 

 

a

 

 is performed at time

 

t

 

, and each condition  holds over the interval , then
each effect  will hold over the interval . If the con-
ditions do not hold, then the outcome of the action is un-
known. We also require that:

1. the conjunction of the conditions and effects must be
logically consistent (i.e. we cannot have inconsistent
conditions, inconsistent effects, or an effect that
negates a proposition at a time when it is required by
the conditions.)

2. each effect must start at or after the beginning of the
action, that is: 

Using this action representation, a simple STRIPS action
with preconditions  and effects  would be
modelled as:

 

a

 

cond: 

eff:

 

As a more complex example, consider an action that requires
that 

 

p

 

 hold throughout the action, and requires a resource 

 

r

 

for two time units before releasing 

 

r

 

 and producing its final
effect 

 

f

 

. This would be modelled as:

 

a

 

cond: 

eff:

 

Note that there is a subtle difference between the effects:
, , and . The first specifies

that 

 

e

 

 holds over 

 

t

 

+[0,2)

 

, and ceases to hold after that. The
second says that 

 

e

 

 holds over 

 

t

 

+[0,2)

 

 but may persist after that
if nothing else interferes. The last specifies that 

 

e

 

 holds at 

 

t

 

,
does not hold at 

 

t

 

+2

 

, but leaves the status of 

 

e

 

 at intermediate
times subject to persistence or interference by other actions.
All three of these turn out to be useful, but the first is gener-
ally the most common.

For convenience we will use 

 

Cond(

 

a;t

 

)

 

 and 

 

Eff(

 

a;t

 

)

 

 to refer
to the conditions and effects for action 

 

a 

 

performed at time 

 

t

 

.
Thus, if the action a is described by:

 

a

 

cond: 

eff:

 

1. Unlike the definition of Allen [1], our definition of 

 

Meets

 

 is not
symmetric. We also permit the endpoint to be in both intervals.
Technically this would be considered overlap by Allen.

p t;
p i;

p i; t i∈( )∀ p t;⇔

t1 t2,[ ] t1 t2,( ) t1( t2 ],
t1[ t2 ),

i
–

i
+

t i+

t i
–

+ t i
+

+

Meets i j,( ) i
+

j
–

= i
+

i j∪∈∧⇔

i j||

 

2. For simplicity, we have chosen not to include disjunctions in the
condition, or conditional effects. Both of these can be handled, but
complicate the axioms.

p1 δ1; � pn δn;, ,

e1 ε1; � en εn;, ,

pk t δk+
ek t εk+

εk
–

0≥

p1 � pn, , e1 � en, ,

p1 0; � pn 0;, ,

e1 1; � en 1;, ,

p 0 2,[ ]; r 0;,

r 0 2,( );¬ r 2;, f 2;∧

e 0 2,[  ); e¬ 2;,{ } e 0 2,[  ); e 0; e¬ 2;,{ }

p1 δ1; � pn δn;, ,

e1 ε1; � en εn;, ,
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we get:

It is not particularly important how we define the duration of
an action, but in keeping with the usual intuitions, we will
define it as being the difference between the end of the last
effect, and the start of the action. Thus:

Exogenous Conditions
In order to model more realistic planning problems, we need
to model exogenous conditions. By an exogenous condition,
we mean any condition dictated by actions or events not un-
der the planner’s control. For a STRIPS planning problem,
the initial conditions are the only type of exogenous condi-
tions permitted. More generally, exogenous conditions can
include such things as the intervals during which certain ce-
lestial objects are visible, or the times at which resources be-
come available. We can consider exogenous conditions as
being the effects of unconditional exogenous actions. For
convenience, we will lump all exogenous conditions togeth-
er, and consider them as being the effects of a single uncon-
ditional action, X that occurs at time 0:

X cond: 

eff:

where for initial conditions, the interval would be the time
point 0. Thus, for a telescope observation problem, we might
have something like:

X cond: 

eff:

For purposes of this paper, we have chosen to consider only
unconditional exogenous events. More generally, we might
want to consider conditional exogenous events – i.e., events
that occur only if the specified conditions are met. As it turns
out, this extension requires a few additional axioms, but is
otherwise not particularly difficult. We will elaborate on this
later.

Simple Reachability
We first consider a very simple notion of reachability; we re-
gard a proposition as being reachable at time t if there is
some action that can achieve it at time t, and each of the con-
ditions for the action is reachable at/over the specified time
or interval. This is a very optimistic notion of reachability
because even though two conditions for an action might be
possible, they might be mutually exclusive, and we are not

yet considering this interaction. To formalize reachability,
we will use two modal operators, , and . ,
means that p;t is logically possible – that is, p;t is consistent
with the exogenous conditions.  means that p;t is opti-
mistically achievable or reachable – that is, there is some
plan that could (optimistically) achieve p;t. According to
these definitions, if p;t is reachable, it is possible. However
the converse is not true – p;t can be logically possible, but not
reachable, because the set of actions is not sufficiently rich
to achieve p;t. 

For convenience, we will allow and to apply to in-
tervals as well as single time points:

In general, modal logics tend to have nasty computational
properties, but the logic we will develop here is particularly
simple – we do not require any nesting of these modal oper-
ators, and we will not be allowing any quantification inside
of a modal operator.

Exogenous Conditions
The first set of axioms we need are the exogenous condi-
tions. Thus:

(1)

Of course, the exogenous conditions are also both possible
and reachable:

(2)

(3)

Likewise, the negation of any exogenous condition cannot
be either possible or reachable:

(4)

(5)

Finally, we need to be able to apply the closed world as-
sumption to the exogenous conditions, inferring that any-
thing that is not explicitly prohibited by the initial conditions
is possible: 

(6)

Persistence
Next, we need a frame axiom for reachability – that is, an ax-
iom that allows us to infer that if a proposition is reachable
at a given time then it is reachable later on, just by allowing
it to persist. However, we need to make sure that the propo-
sition isn’t forced to become false by an exogenous condi-
tion. To do this, we require that the proposition also be
possible. A first version of this axiom is:

(7)

Here, the intervals i and j can be either open or closed – all
we require is that they meet. Most commonly, i will be a sin-
gle time point t, and j an open interval (t,t’), where t’ is either

, or the next time point at which the proposition p becomes
false because of exogenous conditions.

Cond a t;( ) p1 t δ+ 1; � pn t δ+ n;, ,
 
 
 

=

Eff a t;( ) e1 t ε+ 1; � en t ε+ n;, ,
 
 
 

=

D a t;( ) j
+

j e j; Eff a t;( )∈:{ }
max≡

xc1 δ1; � xcn δn;, ,

Telescope-parked 0;

Sunset 0023;

Visible C842( ) 0217 0330,[ ];

�

p t;( )◊ p t;( )∆ p t;( )◊

p t;( )∆

◊ ∆

p i;( )◊ t i∈( ) p t;( )◊∀≡

p i;( )∆ t i∈( ) p t;( )∆∀≡

Eff X ;0( ) p t;|–( ) p t;|–

p i; p i;( )◊⇒

p i; p i;( )∆⇒

p i; p¬ i;( )◊¬⇒

p i; p¬ i;( )∆¬⇒

Eff X 0;( ) p t;¬|–/( ) p t;( )◊|–

p i;( )∆ meets i j,( ) p j;( )◊∧ ∧ p i j||;( )∆⇒

∞
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Unfortunately, this axiom is a bit too optimistic – it al-
lows us to persist transient effects of an action indefinitely
into the future. Normally this is correct, but if an exogenous
condition blocks a condition for that action at some time in
the future, then the transient effect should not persist indefi-
nitely. For example, suppose that we have a single action a
having condition p;0, and requiring a resource r for two time
units before releasing r and producing its final effect f. This
would be modelled as:

a cond: 

eff: (8)

Now suppose that the conditions p and r are initially true,
but p becomes false at time 3. As a result, a is only reachable
up until time 3. The effect f is first reachable at time 2, but
can persist indefinitely. However, ¬r can only occur during
the action, and should therefore only be reachable in the in-
terval (0,5). However, Axiom (7) would allow us to persist
the reachability of  indefinitely into the future.

The way we fix this problem is to specialize axiom (7) to
only allow action effects to persist if they are not later over-
ridden by the action. Formally, we define p;i to be a persis-
tent effect for an action if there is no other effect q;j such that
q is inconsistent with p and j ends after i:3

Using this definition, we can restrict axiom (7) by requiring
that p;t be a persistent effect:

(9)

This allows us to persist the reachability of persistent effects,
but not transient ones.

Actions
Finally, we need axioms that govern when actions are reach-
able, and what their effects will be. An action is reachable if
its conditions are reachable and the effects are not prevented:

(10)

Conversely, if an action is reachable, both its conditions and
its effects must be reachable:4

(11)

(12)

Conjunctive Optimism
Although Axiom (10) is technically correct, it is difficult to
satisfy. The trouble is the premise . Typically, the
condition for an action will be a conjunction of propositions,
so we need to be able to prove that this conjunction is reach-
able in order to be able to use the axiom. Unfortunately, we
cannot usually do this, because our axioms only allow us to
infer that individual effects are possible, (or at best, conjunc-
tions of effects resulting from the same action). Deciding
whether a conjunction of propositions is reachable is a plan-
ning problem, so there is little hope that we can do it effi-
ciently. Instead, we will be extremely optimistic, and
suppose that if the individual propositions are reachable,
then the conjunction is reachable:

(13)

In the next section we will revise this axiom to require that
the propositions are not mutually exclusive.

An Example
To see how the axioms for simple reachability work, we re-
turn to our example action shown in equation (8). This action
has a condition p;0, and requires a resource r for two time
units before releasing it and producing the effect f: We sup-
pose that the conditions p and r are initially true, but p be-
comes false at time 3. We therefore have the exogenous
conditions:

X cond: 

eff:

Using the axioms developed above, we can now derive
reachability for the propositions p, r, ¬r, e, and the action a:

1. , , X;0, (1)

2. , 1, (3)

3. , 1, (6-CWA)

4. , 2, 3, (9-Persist.)

5. 4, (10)

6. , 5, (12)

7. 1, (6-CWA)

8. 6, 7, (9-Persist.)

In this proof the numbers at right refer to the previous lines
of the proof, and the axioms that justify the step. A graphical
depiction of the final reachability intervals is shown in Fig-
ure 1.

Thus, we can see that because the action a is only possible
until time 3,  only persists until time 5, but f can persist
indefinitely. Of course, if there were an exogenous effect that
forced f to be false at some time in the future, then the per-
sistence of f would also be curtailed by axioms (6) and (9).
If p later became true again, we would be able to apply ac-
tion a again, so the action a, and propositions f and ¬r could
become reachable during additional intervals.

3. Since the effects of an action must be consistent, the intervals i
and j will actually be disjoint.

4. Technically, equation (11) is not valid because it is possible to
initiate an action a;t even though some of its later conditions fail to
hold. According to our semantics, the outcome of such an action is
undefined. However, for our purposes, we will assume that no
planner would include the action a;t without guaranteeing
Cond(a;t). As a result, we can get away with this assumption.

p 0; r 0;,

r 0 2,( );¬ r 2; f 2;, ,

r¬

PersistEff a t;( ) p i; Eff a t;( )∈

q j; Eff a t;( )∈∃¬ q j; p s;¬⇒( ) s i
+

>∧: 
 

:












=

a t,∃ a t;( )∆ p i; PersistEff a t;( )∈∧:

meets i j,( ) p j;( )◊∧ ∧ p i j||;( )∆⇒

Cond a i;( )∆ Eff a i;( )( )◊∧ a i;( )∆⇒

a t; Cond a t;( ) Eff a t;( )∧⇒

a i;( )∆ a t; p t ';⇒( )∧ p t ';( )∆⇒

Cond a t;( )∆

p1 i1;( )∆ � pn in;( )∆∧ ∧

p1 i1; � pn in;∧ ∧( )∆⇒

p 0; r 0; p 3;¬, ,

p 0; r 0; p 3;¬

p 0;( )∆ r 0;( )∆

p 0 3,( );( )◊ r 0 ∞,( );( )◊

p 0 3,[  );( )∆ r 0 ∞,[  );( )∆

a 0 3,[  );( )∆

f 2 5,[  );∆ r¬ 0 5,( );( )∆

f 5 ∞,[  );( )◊

f 2 ∞,[  );( )∆

r¬
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The style of reasoning that we have done here closely
mimics what goes on in Graphplan – we started at time 0,
and worked forward in time, adding new actions and propo-
sitions as they became reachable. However, we are not lim-
ited to a strict temporal progression – we can draw
conclusions in any order, as long as they are sanctioned by
the axioms.

Mutual Exclusion
Much of the power of Graphplan comes from the use of mu-
tual exclusion reasoning, which rules out many combina-
tions of incompatible actions and propositions. From the
point of view of our logic, proving that two or more actions
or propositions are mutually exclusive amounts to proving
that the conjunction is not reachable. We will use an n-ary
modal operator

to indicate that the propositions  are mutually
exclusive. We note that the arguments to M are commutative
and associative. As before we will extend the notation to
work on intervals:

Using mutual exclusion, we revise the conjunctive opti-
mism axiom (13) to be:

(14)

Our job then, is to write a set of axioms that allows us to infer
when propositions are mutually exclusive. This will restrict
what we can infer with axiom (14), and hence restrict our
ability to infer when actions are reachable using axiom (10).
We note that if any set of propositions and/or actions are mu-
tually exclusive, then any superset is mutually exclusive:

As in the work on Temporal Graphplan [27], the fact that
we are dealing with a much more general notion of time
means that actions and propositions can overlap in arbitrary
ways. As a result, it helps to define mutual exclusion be-
tween actions and propositions, as well as between pairs of
actions and pairs of propositions. In addition, because of ex-
ogenous events, and transient action effects, mutual exclu-
sion relationships can come and go repeatedly.5 As it turns

out, the general rules for mutual exclusion reasoning take on
a remarkably clean and simple form. However, practical in-
stantiations of them turn out to be more complex.

Logical Mutex
If a set of propositions and or actions are logically inconsis-
tent then they are mutex. Formally:

(15)

where the  can be either propositions p;t, or actions a;t.
This rule is the seed that allows us to infer a number of sim-
ple logical mutex relationships. For example, if  and

 we get the obvious mutex rule:

which forms the basis for Graphplan mutual exclusion rea-
soning. Similarly, if , and , and a;t’ has a pre-
condition or effect ¬p;t, then the action and proposition are
mutex (since ):

Going a step further, if we have two actions with logically
inconsistent preconditions or effects this rule allows us to
conclude that the actions are mutex:

Although we will not illustrate it here, rule (15) also admits
the possibility of inferring additional logical mutex from do-
main axioms that might be available (e.g. an object cannot
be in two places at once). It can also be used to derive logical
mutex between actions that have more general resource con-
flicts.

All of these logical mutex relationships are the seeds that
serve to drive the remainder of the mutex reasoning. As we
will see below, they allow us to infer additional mutex rela-
tionships between actions and propositions, pairs of actions,
and ultimately pairs of propositions.

Implication Mutex
Our second mutex rule is also remarkably simple, but more
subtle. Let  be a set of propositions/actions that
are mutex. Suppose that a second set of propositions/actions

 implies . Then the set  is also mutex. Formally:

(16)

Again, the set elements can be either propositions or actions.
For binary mutex, this reduces to the formula:

As an example of the use of this formula, suppose that 
and  are mutex propositions, and  is an action that has

 as a precondition. Since the action implies its precondi-
tions, this rule allows us to infer that the action is mutex with

. Going one step further, if  is an action, then this rule
allows us to conclude that the actions  and  are mutex.
Thus, this single rule allows us to move from proposition/

Figure 1:  Reachability intervals for a simple example.

[

0 1 2 3 4 5 ∞

)

[ )

[ )

[ )

( )

p
a

r
f

¬r

M p1 t1; � pn tn;, ,( )

p1 t1; � pn tn;, ,

M p1 i1; � pn in;, ,( )

t1 i1∈ � t n i n∈, ,( )∀ M p1 t1; � pn tn;, ,( )⇒

p1 i1;( )∆ � pn in;( )∆∧ ∧ 
  M p1 i1; � pn in;, ,( )¬∧

p1 i1; � pn in;∧ ∧( )∆⇒

M s( ) s s ′⊂∧ M s ′( )⇒

5. In Graphplan and even TGP, once a mutex relationship disap-
pears, it cannot reappear at a later time.

ψ1 � ψk∧ ∧( )¬ M ψ1 � ψk, ,( )⇒

ψi

ψ1 p t;≡
ψ2 p t;¬≡

M p t; p¬ t;,( )

ψ1 p t;≡ ψ2 a t ′;≡

a t ′; p t;¬⇒( )

a t ′; p t;¬⇒( ) M p t; a t ′;,( )⇒

a1 t1; p t;⇒( ) a2 t2; p t;¬⇒( )∧ M a1 t1; a2 t2;,( )⇒

Γ Γ1 Γ2∪=

Ψ Γ1 Ψ Γ2∪

M Γ1 Γ2∪( ) Ψ Γ1⇒( )∧ M Ψ Γ2∪( )⇒

M ψ1 ψ2,( ) ψ3 ψ1⇒( )∧ M ψ3 ψ2,( )⇒

ψ1
ψ2 ψ3

ψ1

ψ2 ψ2
ψ3 ψ2
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proposition mutex to proposition/action mutex, to action/ac-
tion mutex.

To see how this works, consider two simple STRIPS ac-
tions: a, having precondition p and effect e, and b, having
precondition q and effect f. Suppose that both p and q are
reachable at time 1, but that they are mutex as depicted
graphically in Figure 2. We can therefore apply the above

rule to conclude that a;1 is mutex with q;1 and b;1 is mutex
with p;1. Having done this, we can apply the rule again to
conclude that a;1 is mutex with b;1 as shown in Figure 3.

While axiom (16) works fine for a discrete STRIPS mod-
el of time, more generally, we do not want to do the mutex
reasoning for each individual time point. Instead, we would
like to do it for large intervals of time. So suppose we start
out with two propositions/actions  and  being mutex
over the intervals  and , and . Then to find
the time interval over which  will be mutex with , we
need to gather up all the times  where  implies  at
some point in . Formally:

(17)

To illustrate how this works, we extend our example from
Figure 2 to continuous time, and imagine that p and q are
produced by mutually exclusive actions of different dura-
tion. In particular, suppose that p over [1,3) is mutually ex-
clusive with q over [2,3). Using (17) we could conclude that:

as illustrated in Figure 4.

Explanatory Mutex
Our final rule is somewhat subtle and tricky. As a result, we
will only show the binary version here, although it too can
be generalized to n-ary mutex. This rule is, in effect, the ex-
planatory version of the previous rule. Basically, it says that
if all ways of proving ψ1 are mutex with ψ2 then ψ1 and ψ2
are mutex:

(18)

The tricky part is the phrase “all ways of proving”. For our
purposes, we are interested in the case where ψ1 is a propo-
sition p;t and ψ3 is a way of achieving p;t. We could achieve
p;t by performing an action a;t’  that has p;t as an effect, but
we could also potentially perform the action a at some earli-
er time and allow p to persist. Thus, we need to account for
all of these possibilities. Furthermore, if p is achieved earlier
and allowed to persist, that “means of achieving” could be
mutex with ψ2 for one of two reasons: either a;t’ is mutex
with ψ2, or the persistence of p is mutex with ψ2.

To formalize this, we define the support of a proposition
as being the union of the direct support and the indirect sup-
port for the proposition: 

The direct support is simply the set of actions that can direct-
ly achieve the proposition:

The indirect support is a set of miniature plans for achieving
the proposition, each consisting of an action a;t’ that achieves
the proposition before t, and the persistence of the proposi-
tion until t. As with persistence axiom (9), we need to be
careful not to rely on the persistence of transient effects:

Using this concept of support, we can restate our more spe-
cific version of (18) as:

(19)

For the case of direct support, σ is just an action a;t, so we
can directly evaluate . However, for indirect effects,
σ is a conjunction of an action a;t and a persistence p;i. If ei-
ther of these is mutex with ψ, then the conjunction is mutex
with ψ. More generally:

As a result, we expand axiom (19) into the more useful form:

Figure 2:  A simple STRIPS example with p and q mutex at
time 1.

Figure 3:  Mutex derived by the implication rule

Figure 4:  Implication mutex for intervals

q;1 b;1 f;2

p;1 a;1 e;2

q;1 b;1 f;2

p;1 a;1 e;2

ϕ1 ϕ2
i1 i2 ϕ3 t3; ϕ1 t1;⇒

ϕ3 ϕ2 i2;
t3 ϕ3 ϕ1

i1

M ϕ1 i1; ϕ2 i2;,( ) i3 t3 ϕ3 t3; t1 i1∈( )∃ ϕ1 t1;: 
 ⇒:

 
 
 

=∧

M ϕ3 i3; ϕ2 i2;,( )⇒

M a 1 3,[  ); q 2 3,[  );,( )

M b 2 3,[  ); p 1 3,[  );,( )

M a 1 3,[  ); b 2 3,[  );,( )

q;[2,3) b;[2,3) f

p;[1,3) a;[1,3) e

ψ3 ψ3 ψ1⇒( ) M ψ3 ψ2,( )⇒ 
 ∀

 
 
 

M ψ1 ψ2,( )⇒

Supp p t;( ) DirSupp p t;( ) IndSupp p t;( )∪=

DirSupp p t;( ) a t ′; a t ′;( )∆ Eff a t ′;( ) p t;⇒( )∧:
 
 
 

=

IndSupp p t;( ) a t ′; p t″ t,(  ];∧ :




=

a t ′;( )∆ t″ t< PersistEff a t ′;( ) p t″;⇒( ) p t″ t,(  ];( )◊∧ ∧ ∧




σ Supp p t;( )∈∀ M σ ψ,( ): 
  M p t; ψ,( )⇒

M σ ψ,( )

M σ1 ψ,( ) M σ2 ψ,( )∨ M σ1 σ2∧ ψ,( )⇒

σ DirSupp p t;( )∈∀ M σ ψ,( ): 
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 6 (20)

To illustrate how this axiom works, we return to the sim-
ple example in Figure 3. From implication mutex we already
know that a;1 and b;1 are mutex. Effect e;2 has only the direct
support a;1. As a result, we can use the above rule to con-
clude that b;1 is mutex with e;2. Similarly, we can conclude
that a;1 is mutex with f;2. Finally, using these facts we can
conclude that e;2 is mutex with f;2 as shown in Figure 5.

As with Implication Mutex, we would like to be able to
apply (19) and (20) to intervals rather than just single time
points. If we generalize the notion of support to intervals, we
can state the more general version as:

(21)

As we did with (19) we could expand out to the longer but
more useful form containing direct and indirect support.

Practical Matters

Limiting Mutex Reasoning
The above mutex theory is very general, but it can produce
huge numbers of mutex conclusions, many of which would
not be very useful. In order to make the reasoning practical,
we need to constrain the application of these axioms so that
only the most useful mutex relationships are derived.

The first, and most obvious way of limiting the mutex
rules is to only apply them to propositions and actions that
are actually reachable. If something isn’t reachable at a giv-
en time, it is mutex with everything else, so there is no point
in trying to derive additional mutex relationships. As with
ordinary Graphplan, it also seems likely that we only want
to derive binary mutual exclusion relations, since the cost of
checking for higher order mutex relationships rises dramat-
ically with arity.

While these limitations certainly help, they are not
enough. The trouble is that our laws allow us to conclude
mutual exclusion relationships for propositions and actions
at wildly different times. For example, we might be able to
conclude that p;2 is mutually exclusive with q;238. While this
fact could conceivably be useful, it is extremely unlikely. To

understand why, and what to do about it, we need to consider
how mutex are used. 

Fundamentally, we use mutex to decide whether or not
the conditions for actions are reachable, and hence whether
the actions themselves are reachable (axioms (14) and (10)).
Thus, the mutex relations that ultimately matter are the prop-
osition/proposition mutex between conditions for an action.
With simple STRIPS actions, this means we are concerned
with propositions being mutex at exactly the same time. Un-
fortunately, with more general conditions we can’t do this –
an action may require p;t, and q;t+3. Thus, we’d need to know
whether  in order to decide whether the action
was reachable. However, we do not care about

. Suppose we define the separation for a pair
of conditions in an action as the distance between the inter-
vals over which the conditions are required to hold. For our
example above, the condition separation was 3. We then take
the maximum over all conditions for an action, and the max-
imum over all actions. This tells us the maximum range of
times that we ultimately care about for proposition/proposi-
tion mutex relationships. In the extreme case where all pre-
conditions of actions are required at the start of the action,
we only need to consider whether propositions are mutex at
the same time.

We can draw similar conclusions concerning action/ac-
tion and action/proposition mutex, although in the latter
case, the ranges are somewhat wider. This is because we are
considering actions that support propositions, which means
the actions start before their effects.

Limiting the application of the axioms to such time rang-
es drastically reduces the number of mutex conclusions. It is
not yet clear (either theoretically or practically) whether
such restrictions would result in the loss of any useful mutex
relationships. This issue needs to be carefully investigated.

Constraint-based Reachability Reasoning
We now turn our attention to the issue of finding an effective
way to calculate reachability information. For this, we turn
to constraint reasoning, which is an effective foundation for
reasoning about temporal planning problems. The con-
straint-based reachability reasoning tracks variables that de-
scribe reachability, and enforces constraints that eliminate
times where actions or propositions are not reachable.

The approach is motivated by the interval representation
used for temporal reasoning in various planning systems. In
simple temporal network propagation [7], event time do-
mains are described as intervals, and the algorithm is used to
infer distance relations between events in plans.

The basic idea appears similar to temporal networks; for
each action and proposition, we have a variable representing
when it is reachable, and constraints that relate action and
proposition reachability. However, this reachability problem
does not map to a classical temporal constraint satisfaction
problem. This is because action reachability requires neces-
sary conditions to extend over periods of time, so there is no
notion of a satisfying assignment to those variables. We
therefore turn to a more general class of constraint reasoning

6. In practice, if ψ is mutex with p;t. then we do not need to check
actions that support p prior to t (since the persistence of p will be
mutex with ψ). Thus we only need to consider support for p at
times t after p is mutex with ψ. This involves moving the check for
persistence mutex back into the definition of independent support.

Figure 5:  Mutex derived by the implication rule

α π∧( ) IndSupp p t;( )∈∀ M α ψ,( ) M π ψ,( )∨: 
 ∧

M p t; ψ,( )⇒

q;1 b;1 f;2

p;1 a;1 e;2

σ Supp p i1;( )∈∀ M σ ϕ i2;,( ): 
  M p i1; ϕ i2;,( )⇒

M p t; q t 3+;,( )

M p t; q t 5+;,( )
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problems, where the variables are linked by elimination pro-
cedures [12], that specify when intervals can be eliminated
from the domains. The result is a network where reachability
can be determined effectively by constraint propagation, but
there is no notion of a solution to the network. Different con-
straint propagation methods, such as generalized arc consis-
tency, can be applied to propagate the procedural
constraints. A very simple propagation method is to apply
the set of elimination procedures to quiescence.

Let T be the set of possible times, which may be continu-
ous and infinite. Typically, T will be a sub-interval of the in-
tegers or the real numbers. For each action a, we define a
variable , and for each proposition p, we define a variable

. The initial domain of each variable is T, and the intended
semantics are that the variables represent the times at which
an action or proposition is reachable.

The simplest reachability procedure enforces that if a flu-
ent is not possible, it is not reachable. This gives rise to the
following intervals being eliminated for each variable :

The action reachability axioms are relatively straightfor-
ward as well. Let a be an action with a condition or effect

. If p is not reachable within an interval , then the
action is not reachable at those times that require p to be true
in ; specifically, a is not reachable in the interval:

. (22)

Enforcing the persistence axiom is more involved. The
basic idea is that an interval  where p is not reachable
can be extended up to the point where an action can achieve
p or an exogenous event establishes p. In other words, we can
eliminate the interval:

(23)

Note that in computing the upper bound on this interval, we
do not need to look beyond the next time z (following y) at
which p is already known to be not reachable. Thus, we can
confine our search for actions that achieve p to the interval

If all action effects were persistent, the above rule would
be sufficient. However, with transient effects we can contin-
ue the elimination beyond the transient effect (if the tran-
sient effect ends before a persistent effect becomes
possible). To do this, we compute the above interval consid-
ering only persistent action effects, and then subtract out the
subintervals in which the transient effects are reachable:

(24)

The result is a set of intervals that can be eliminated from
. To make this elimination more efficient, we can confine

our consideration of transient effects to those that are reach-

able in the interval we are subtracting from. But more impor-
tantly, we want to limit the application of this rule to those
situations where we know that something relevant has
changed. There are two circumstances where we actually
need to apply this rule:

1. when a reachability interval has been eliminated from
 (using one of the earlier elimination rules). 

2. when a reachability interval has been eliminated for an
action – in this case, the above rule must be applied to
all effects of that action.

To see how the application of the elimination rule works,
we again look at the earlier example. Initially, the following
intervals have been eliminated:

, , , 

Based on this, the action condition reachability rules only al-
low us to eliminate .

Applying the persistence rule to , we get that no
reachable action establishes p. Formula (23) therefore allows
us to eliminate the interval  for . Applying the per-
sistence rule to other eliminated intervals allows us to elim-
inate:

Now that more intervals have been eliminated for p, the
application of the action condition reachability rules allows

 to be eliminated from .

Finally, the interval 0 has been eliminated from .
Since the effect  is not persistent, Formula (24) eval-
uates to . This allows us to eliminate 
from . Note that the final result is the same as applying
the logical axioms to determine when actions and proposi-
tions may be reachable.

Constraint-based Mutual Exclusion Reasoning
The above formulation does not include mutual exclusion
reasoning. To extend the constraint reasoning to identify
mutual exclusions, we add variables that correspond to pairs
of propositions/actions, each of which represents the set of
time pairs when the action/proposition in question are not
proven to be mutually exclusive.

For any pair of propositions and/or actions, , we
define a variable that takes its values from the set

. The intended semantics is that the variable represents
time pairs where the two elements are not mutually exclu-
sive. In other words, each variable is the inverse of the set of
timepoints where the two elements are mutually exclusive.
Eliminating a pair of times from a variable thus indi-
cates that  being true at time  is mutually exclusive
with  being true at time .

As in our approach to eliminating values to determine
reachability, we use special-purpose elimination procedures
to do the work. Each procedure implements a rule that deter-
mines a set of mutual exclusion relations and eliminates a set
of time pairs. The rules are applied in combination by a suit-
able consistency achievement method.

v a
v p

v p
i p i;( )◊¬:{ }

p δ; x y,[ ]

x y,[ ]

x δ
+

– y δ
–

–[ , ]

x y,[ ]
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–

y> p j; t v a∈ p j; Eff∈ a t;( )∧ 
 ∨:

 
 
 

,

y z,[ ]
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–
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 ∨:

 
 
 

,

j i v a⊆ TransientEff a i;( ) p j;⇒∧ 
 :

 
 
 ∪–
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The elimination rules are based directly on the logical
mutual exclusion rules above. Rather than repeat the logical
formulations, we will describe specific instances that are
based directly on action definitions. Although we do not
show it here, domain axioms, inferred relations, and other
information can easily be cast as elimination rules as well.

Many of the rules can be used to eliminate multiple time
pairs at a time. In particular, the rules allow us to derive that
one interval is mutually exclusive with another interval. In
terms of elimination, this corresponds to removing a region
that is defined by the cross-product of the interval values.
For two intervals,  and we will refer to the cross-
product region as .

Enforcing the logical rules is straightforward. Starting
with a simple proposition-proposition case, we find that for
any proposition  and time , the region can be
eliminated from . For the action-proposition case,
consider the rule based on actions implying their conditions
and effects. Let  be an action with condition or effect .
For any time , the region  can be eliminat-
ed from . Finally, for the action-action case, we
again look at the implications relating actions and conditions
and effects. Let  be an action with condition or effect ,
and  some other action with condition or effect . For
any time , the region  can be re-
moved from . (This is a diagonal swath through the
space.)

Turning our attention to implication mutex rules, we find
that they can take many forms, depending on where propo-
sitions and actions appear. Let us therefore look at one spe-
cific variation, where proposition mutex information is used
to infer an action-proposition mutex, and describe the corre-
sponding elimination rule. Let  and  be propositions, and

 an action with condition or effect . Let  be
a region that has been eliminated from . The region

 can then be eliminated from .
The elimination rules that enforce the explanatory mutex

rule are the trickiest ones to specify. This is in part because
those rules are non-binary, involving more than two vari-
ables. Again, the elimination rules mirror variations of the
general rule, so we will look at a specific version as an ex-
ample.

Let  and  be propositions and  a region
that has been eliminated from . Let

 be an enumeration of all action-effect
pairs that achieve . Furthermore, let

 be the subset of action-effect
pairs that establish  as a persistent effect.

The explanatory mutex axiom allows us to conclude that
the e and f mutex area can be extended, either because  can-
not be established with any action that is not mutex with  in
the time interval in question, or any establishment is tran-
sient and cannot persist into the future.

First, we look at the simpler case, where  cannot be es-
tablished. For each , let  be the set of times where

 is not mutually exclusive with . In other words,
the subset of  that includes  for . Then, let 

be the times where  could establish , with . In
other words:

Now let . If there is an interval of the form 
not within , where , then the region  can
be eliminated from .

Next, we look at the transient case. For each ,
let  be the set of times where p can be made true as an ef-
fect of  and persistence, without mutual exclusion with 
over . To be more exact, let  be the min-
imal time, greater than , such that  is not in

, if such an interval exists, and  otherwise. Then:

Now, let . For any interval ,
 can be eliminated from .

The principal reason for doing mutual exclusion reason-
ing is to allow us to conclude that certain combinations of
action conditions are not reachable, and therefore that the
actions themselves are not reachable. We can do this is sev-
eral ways. The simplest way is to extend Rule (22) to elimi-
nate the interval:

when a has conditions  and , and  has
been eliminated from .

Other Issues

Exogenous Events
For purposes of this paper we assumed that exogenous
events or actions were not conditional in nature. As a result,
we lumped all of the exogenous effects together into a single
action with no conditions. It is not too difficult to extend our
theory to allow general exogenous events. Initially, we start
with the set X of all effects from unconditional exogenous
actions. In order for an exogenous event to take place, its
conditions must be satisfied. Thus, any exogenous event
whose conditions are satisfied in X will also take place, so its
effects must be added to X. We continue in this way until we
obtain the closure of all exogenous conditions. The remain-
ing exogenous actions may or may not occur. However, if
their conditions ever become true, they will definitely occur.
As a result, we need to treat them like domain axioms. In
other words, if x;t is a conditional exogenous event, we need
to add the axioms:

The problem therefore reduces to one of handling domain
axioms, which the theory already handles.

Conclusions
In this paper, we extended reachability and mutual exclusion
reasoning to apply to a much richer notion of action and
time. In doing this, we provided a formalization of these no-
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tions that is independent of any particular planning frame-
work. Surprisingly, the rules for mutual exclusion reasoning
turn out to be simpler and more elegant than we expected,
particularly given the complexity of the rules for Temporal
Graphplan developed by Smith and Weld [27].

There are still a number of issues involved in making this
reasoning practical for temporal planning systems. Restrict-
ing the intervals over which the mutex rules apply seems
critical, but there may be tradeoffs in the veracity of the re-
sulting mutex reasoning. Efficient interval representation
and reasoning is also crucial. Superficially, the problem of
determining reachability looks like it could be cast as a con-
straint satisfaction problem. However, as we’ve discussed
above, the constraints are complex elimination procedures,
and it is not yet clear whether this approach will be compu-
tationally effective.

We are continuing to work towards a CSP implementa-
tion within the Europa planning system [13, 14] and hope to
apply these techniques to real problems involving spacecraft
and rovers.
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